Neuropsychology of Mild TBI: What Do We Know?

Heather G. Belanger, Ph.D., ABPP-CN
James A. Haley Veterans Hospital, Tampa, FL
and Assistant Professor of Psychology,
University of South Florida

Disclaimer

The views expressed in this presentation are those of the author and <u>do not</u> reflect the official policy of the

Department of Veterans Affairs

or

the United States Government

-		
l)ıa	igno	1010
	igi ic	JOIO

American Congress of Rehabilitation Medicine Criteria Definition of Mild TBI

- Traumatically induced physiologic disruption of brain function as indicated by at least one of the following:
 - Any period of loss of consciousness
 - Any loss of memory for events immediately before or after the accident
 - . Any alteration in mental state at the time of the accident
 - Focal neurologic deficits that may or may not be transient
- > Severity of the injury does not exceed:
 - Loss of consciousness of 30 min
 - GCS score of 13-15 after 30 min
 - Posttraumatic amnesia of 24 hr

Mild Traumatic Brain Injury

- Mild TBI accounts for about 80-90% of reported new cases of head injuries each year
- > Controversy exists regarding the long-term effects of mild TBI on cognitive functioning

Criteria for Severity of TBI

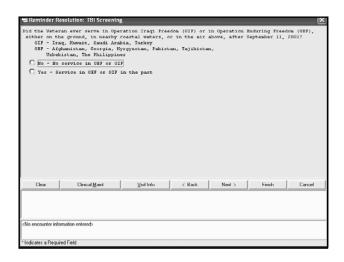
Mild	Moderate	Severe
LOC ≤ 30 min	LOC ≤ 6	LOC > 6 hours
with	hours with	with
normal CT &/or	normal or	normal or
MRI	abnormal CT	abnormal CT
	&/or MRI	&/or MRI
GCS 13-15	GCS 9-12	GCS < 9
PTA ≤ 24hr	PTA ≤ 7days	PTA > 7days

Complicated Mild TBI

When clinical neuroimaging findings are present following a MTBI, the classification changes to "complicated MTBI," which has a 6-month outcome more similar to moderate TBI^{1,2}

¹Williams DH, Levin HS, Eisenberg HM. Mild head injury classification. *Neurosurgery* 1990;27(3):422-8.

²Kashluba S, Hanks RA, Casey JE, Millis SR. Neuropsychologic and functional outcome after complicated mild traumatic brain injury. Arch Phys Med Rehabil 2008; 89(5): 904-11.


TBI Screening Reminder

April 2007

"TBI Screening Reminder" Functions

- > Identify possible OIF/OEF Participants
- Confirm deployment to OIF/OEF Theatres of Deployment
- Screen for TBI if deployed in OIF/OEF Theatres
- Identify those with an OIF/OEF-related history of TBI

,			
,			

old the either OIF OEF	der Resolution: TBI Screeni Veteran ever serve in Op on the ground, in nearby - Iraq, Numain, Saudi Ar - Afghanistan, Georgia, Uzbekistan, The Philippi	eration Iraqi Fre coastal waters, abia, Turkey Kyrgyzstan, Pakis	or in the air	above, after S			Â
C No	- No service in OEF or O	IF					
	- Service in OBF or OIF	in the past					
-00	mplete all open items						
	TRAUMATI	C BRAIN INJURY SC	REBNING				
He	s veteran already been o	liagnosed as havin	g TBI during 0	IF/ORF deploys	ent?		
	Screening complete. should consider orde C Order Consult fo	ring a consult.	s not had follo	ow-up evaluati	on for TBI, y	ou	
Г	Patient declines or is	unable to answer	screening quest	ions.			~
Clear	Clinical Maint	Visit Info	< Back	Next >	Finish	Cancel	
	Reninders: reeming:	in Operation Irag					^

Screening Questions: 4 Sections

- > Section 1: Events
- > Section 2: Immediate Disturbance of Consciousness Symptoms after Events
- > Section 3: New or Worsening Symptoms after the event
- > Section 4: Current Symptoms

Screen Interpretations

- ➤ A "no" response to any of the sections terminates screening and is a "negative screen"
- > A "yes" response to ALL FOUR sections is a "positive screen"

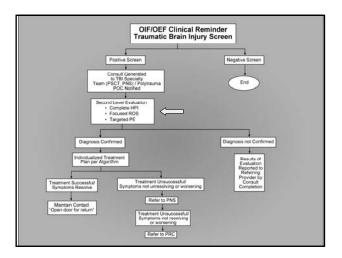
Screen Interpretations

- ➤ The screen will not yield a positive result if there is an historical TBI and there are currently no symptom complaints
- This is therefore *not* a screen for mild TBI but rather a screen for ongoing symptom complaints + history of "possible" TBI

Private Sector Diagnosis

Accuracy of Mild Traumatic Brain Injury Diagnosis

(Powell, Ferraro, Dikmen, Temkin & Bell, 2008)


- · Compared identification of mild TBI via
 - (1) retrospective chart reviews of Emergency Department
 - (2) prospective identification of cases using structured interview and medical record data.

Private Sector Diagnosis

Accuracy of Mild Traumatic Brain Injury Diagnosis

(Powell, Ferraro, Dikmen, Temkin & Bell, 2008)

 Of those cases identified in the ED by study personnel as having mild TBI, 56% did not have a documented diagnosis from the ED physician indicative of mild TBI.

Neuropsychologist Role

- > Assist in clarifying diagnosis
- Symptoms can support a diagnosis of mild TBI but cannot be used to make the diagnosis
- In most cases (due to lack of injury severity medical records) diagnosis based on: Careful interview of events:
 - Ask them to describe in detail what happened
 - Assess for mechanism of injury (i.e., blunt trauma or acceleration/deceleration forces)
 - Assess for any period of confusion, disorientation, or impaired consciousness associated with mechanism

Postconcussion Symptoms

- > Physical
 - Headache, dizziness, fatigue, noise/light intolerance, insomnia
- > Cognitive
 - Memory complaints, poor concentration
- > Emotional
 - Depression, anxiety, irritability, lability

PCS-Like Complaints of NP Dysfunction

- ➤ Common
- > Nonspecific
- Potentially related to non-neurological factors (anxiety, depression, fatigue, stress)
- > Correlate better with distress than with objective indicators of CNS injury
- > Susceptible to attribution bias

Problems with Using Complaints as Evidence of Cognitive Dysfunction

- ➤ Mittenberg et al. (1992, 1997): "expectation as etiology"
 - 'imaginary concussion' produces symptom complaint cluster identical to that reported by patients with 'real' head injury
 - patients with minor TBI significantly underestimate degree of pre-injury problems

		_
		_
		_
		_
		_
		_
		_
		-
		_

Cognitive Sequelae What we know **Acute Symptoms** > There is no doubt that a mTBI causes acute disruption of brain functioning > Initial Symptoms: • At Best: dazed, confused, temporarily disoriented, often with memory gaps for the injury itself and for some period of time thereafter (seconds to hours) • At worst: unconscious for up to 30 minutes > Unresolved are questions of how long the disruption of normal brain functioning lasts and whether symptoms and impairments can continue long-term Mild TBI: Five Meta-analytic Studies: I (Binder, Rohling, & Larrabee, 1997; Binder & Rohling, 1996; respectively) > Found the long-term cognitive impairment effect size for mild TBI was very small (0.1 -0.2) and not statistically significant > In contrast the long-term effect of financial incentives on cognitive impairment in a mild TBI population was larger (0.5) and significant

Mild TBI:

Five Meta-analytic Studies: II

(Schretlen & Shapiro, 2003)

- ➤ A second recent meta-analytic study found that overall neuropsychological effect size (d) for MTBI in prospective studies was 0.24
- > Categorized into 4 time-since-injury intervals the effect sizes were:

< 7 days	7-29 days	30-89 days	> 89 days
0.41	0.29	0.08	0.04

Mild TBI:

Five Meta-analytic Studies: III

(Frencham, Fox & Maybery, 2005)

- > Overall effect size was moderate (g=.32) but tended toward zero with increasing time since injury.
- > Categorized into 2 time-since-injury intervals the effect sizes were:

Less than 3 months	More than 3 months
0.33	0.11

Mild TBI – Cognitive Findings: Meta-Analysis IV

(Belanger, Curtiss, Demery, Lebowitz, Vanderploeg, 2005)

- > Inclusion Criteria
 - Evidence of mild head injury
 - · Control group utilized
 - Separate results by severity level
 - Time since injury reported
 - Cognitive measures, experimental or clinical
 - Means and SDs presented

Mild TBI – Cognitive Findings: Meta-Analysis IV

(Belanger et al., 2005)

Study Search

- 1970 to March 2004 PubMed and PsychINFO, other MTBI study reference sections
- 133 studies from which 39, with a total of 41 effect sizes, met inclusion criteria
- 1463 cases of MTBI and 1191 control cases

Mild TBI – Cognitive Findings: Meta-Analysis IV

(Belanger et al., 2005)

> Moderators Examined:

- Cognitive domain
- Time since injury (< 90 days versus ≥ 90 days)
- Selection context of the study participants
 - Litigation
 - Symptomatic/clinic-based
 - Unselected samples

Mild TBI – Cognitive Findings: Meta-Analysis IV

Cognitive Domains Examined:

- > Global Cognitive Ability
- > Attention
- > Executive Functions
- > Fluency
- > Memory Acquisition
- > Delayed Memory
- > Language
- > Visuospatial Skill
- > Motor Functions

•	
•	
•	
•	
•	

Mild TBI – Cognitive Findings: Meta-Analysis IV

(Belanger et al., 2005)

- > Overall effect size, d, associated with MTBI was 0.54
- Statistically significant deficits in all domains except motor functions (only two studies included motor functions)
- Most effect sizes were moderate to large (Cohen, 1988) with <u>fluency</u> (d = 0.77) and <u>delayed memory</u> (d = 0.69) having the largest overall effect sizes
- Smallest overall effects were found on motor (d = 0.16) and executive measures (d = 0.21)

Mild TBI: Meta-Analysis IV

(Belanger et al., 2005)

Time	Litigation	Clinic	Unselected
Post-Inj.	Based	Based	Samples
< 90 days	0.52	No studies	0.63
<u>></u> 90 days	0.78	0.74	0.04

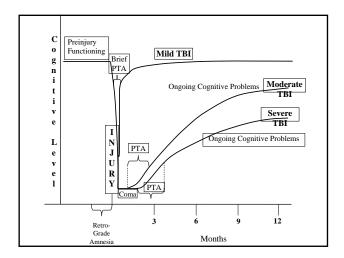
<u>Sport Injury</u> Mild TBI – Cognitive Findings: Meta-Analysis V

(Belanger & Vanderploeg, 2005)

- > Literature reviewed from 1970 to August 2004
- > 21 studies from which a total of 41 effect sizes, met inclusion criteria
- > 790 cases of MTBI and 2016 control cases

•		
•		
,		
•		
•		
•		
•		
,		

Sport Concussion Cognitive


Findings: Meta-Analysis V (cont.)

Overall effect size of concussion was 0.49

- Comparable to general MVA acceleration/ deceleration effect size in mTBI; d = 0.54
- > Acute effects (< 24 hrs) largest for:

Delayed memory; d = 1.00
 Memory acquisition; d = 1.03
 Global cognitive functioning; d = 1.42

- > However, no residual effects when evaluated
 - > 7 days postconcussion

Conclusion

When looking at the mild TBI population, there are generally no long-term cognitive sequelae

Yes, But.... Is our population (OEF/OIF) somehow different? "Diagnostic Threat" (Suhr & Gunstaad, 2002, 2005) > Evaluations of the same mild TBI population if conducted under the "explanation" of studying mild TBI results is poorer neuropsychological performance than the same evaluation conducted with a neutral "explanation" ➤ Unfortunately, the context of the evaluation influences the findings PTSD and Cognitive Deficits > Persian Gulf War veterans > PTSD was associated with relative

- performance deficiencies on tasks of:
 - · sustained attention
 - · mental manipulation
 - verbal learning
 - executive control, and
 - performances were characterized by errors of commission and intrusion

Vasterling et al., Neuropsychology, 1998;12:125-33

Neurocognition Deployment Health Study

Vasterling et al., JAMA, 2006

- ➤ 600+ soldiers tested before and after Iraq deployment
- "Neuropsychological compromise" on sustained attention, verbal learning, and visuospatial memory
- > Increased negative state affect
- > History of mild TBI had no effect on neuropsychological findings

Screening for cognitive dysfunction in OIF/OEF service members with explosion injuries admitted to a burn unit.

(Mercado et al., 2008, published abstract in Archives of Clinical Neuropsychology)

- 123 evaluations on patients with burns secondary to explosive munitions.
- No differences on cognitive measures (RBANS) between those with mild TBI and no mild TBI.
- Mild TBI group more likely to have psychiatric diagnoses.

Performance on the Automated Neuropsychological Assessment Metrics (ANAM) in a Non-Clinical Sample of Soldiers Screened for Mild TBI after Returning from Iraq and Afghanistan: A Descriptive Analysis

(Ivins, Kane & Schwab in press JHTR)

- Convenience sample of 956 soldiers administered the ANAM
- History of deployment-related mild TBI up to two years prior to cognitive testing was not associated with poor ANAM performance post deployment.
- No associations between poor ANAM performance and the number of lifetime TBIs, injury severity or the number post-concussive symptoms

What about Different Mechanisms?	
Functional Outcomes of Blast vs. Non-Blast Injuries (Sayer, Chiros, Sigford, Scott, Clothier, Pickett, Lew, APMR, 2008) Chart reviews of 188 OEF/OIF patients admitted to PRCs during 1st 4 years of OEF/OIF Outcomes assessed were:	
Cognitive FIM Motor FIM Length of Stay (LOS) Mechanism of Injury	

		anism of Injury	
	Blast	Other	p-value
Injured System	(n=106)	(n=82)	
Brain Injury	96%	99%	NS
Type of brain injury			.001
Closed	42%	70%	
Penetrating	58%	30%	
Cognition	88%	93%	NS
Pain	83%	80%	NS
Balance	68%	62%	NS
Motor Fx	62%	65%	NS
Sleep	60%	57%	NS

	Mec	Mechanism of Injury		
	Blast	Other	p-value	
Injured System	(n=106)	(n=82)		
Seeing	58%	46%	NS	
Hearing Loss	48%	33%	<.05	
Tinnitus	26%	12%	<.05	
Communication	50%	49%	NS	
Mental Health Sxs	61%	52%	NS	
Depressive Sxs	37%	36%	NS	
PTSD Sxs	42%	24%	<.01	
Other anxiety	26%	24%	NS	
Psychotic Sxs	4%	4%	NS	
Behavior	26%	22%	NS	

Functional Outcomes of Blast vs. Non-Blast Injuries

(Sayer, Chiros, Sigford, Scott, Clothier, Pickett, Lew, APMR, 2008)

- Mechanism of injury (blast vs other) did not predict functional gain scores (FIM).
 - Baseline fx was strongest predictor of FIM gain and LOS

Neuropsychological Effects of Blast vs. Non-Blast TBI

(Belanger, Kretzmer, Yoash-Gantz, Pickett, Tupler, JINS, 2009)

- ➤ 102 consecutively assessed post-TBI individuals primarily returning active-duty or veteran military personnel who were injured in Afghanistan or Iraq (67% active duty).
- > Excluded:
 - failed SVT (*n* = 31)
 - comorbid neurological disorders (e.g., stroke) (n = 1)
 - brain injury due to gunshot (n = 3)

•		
•		
	 <u>.</u>	
•		
•		
•		
•		
•		

Demographic Information (Belanger, Kretzmer, Yoash-Gantz, Pickett, Tupler, JINS, 2009)

- > Mean age = 28.7 (sd 7.7)
- > Mean education = 12.9 years (sd 2.0)
- > WTAR-predicted FSIQ = 97.2 (sd 13.7)
- > 96% male
- > 91% right-handed
- > 63% inpatient

Demographic Information (Belanger, Kretzmer, Yoash-Gantz, Pickett, Tupler, JINS, 2009)

	Blast (n=61)	Non-Blast (n=41)	p-value
Age	29 (7.9)	28.2 (7.5)	p>.59
Education in years	13.1 (2.1)	12.16 (1.7)	p>.21
WTAR FSIQ	98.5 (14.2)	95.2 (13.0)	p>.24
Days Since Inj	ury		
<90 days	28	24	<i>p</i> >.13
90 days to one year	8	3	
>1 year	25	14	

Blast vs. Non-Blast in Mild TBI (Belanger, Kretzmer, Yoash-Gantz, Pickett, Tupler, JINS, 2009)	
> More PTSD sxs reported by blast group	
and more PTSD sxs reported over time.	
	1
Summary	
No evidence that mild TBI due to blast or experienced in OEF/OIF is any different in	
terms of cognitive sequelae > There is evidence that PTSD may impact	
cognitive functioning > There is evidence that deployment itself	-
may have an adverse impact on cognition, albeit quite small.	
	1
Let's look at an individual	
study that found long-term	
cognitive difficulties	

Vietnam Experience Study

Subjects

- Vietnam Experience Study Data/Center for Disease Control Vietnam Experience Study 1988a, 1988b <u>JAMA</u>
- ➤ 4,462 randomly selected male US Army vets (community dwelling, not clinic-referred or self-referred)
- > Entered military between 1/65 12/71
- > Minimum of 4 months active duty
- > Served only one tour of duty

Subjects cont'd

- > Racial makeup of the 4,462 participants:
 - 81.9% Caucasian
 - 11.8% African-American
 - 4.5% Hispanic
 - 1.9% Other
- > Mean age = 38.36 years (SD = 2.53)
- ➤ Mean level of education = 13.29 years (SD = 2.3)
- \gt Mean IQ = 105 (SD = 20.32) (based on GTT)

	_
	_
	_
	_
-	
-	
	_

Subjects cont'd

- > Participants underwent a 3 day evaluation including:
 - extensive medical, psychological, and neuropsychological examination
 - included were questions regarding MVA, head injury, loss of consciousness, and subsequent hospitalization
- ➤ Evaluations took place approximately 16 years post-military discharge

Measures

- > Diagnostic Interview Schedule (DIS-III-A)
- > Extensive surveys of physical functioning and symptoms
- > Battery of neuropsychological tests

Groups and Sample Sizes

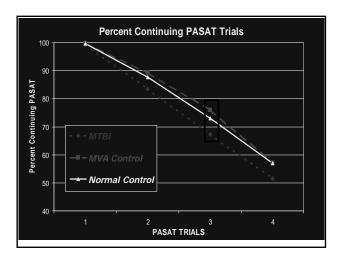
Head Injury with LOC	254

MVAs or TBIs occurred an average of 8 years prior to the current evaluation

Neuropsychological Measures

- > Multivariate analysis of variance (MANOVA) was conducted with 14 neuropsychological measures, which cover the domains of:
 - » Complex Attention
- » Non-Verbal Abilities
- » Psychomotor Speed
- (visuospatial)
- & Coordination
- » Verbal Memory
- » Verbal Abilities
- » Visual Memory
- » Executive Abilities

Statistical Analyses: Neuropsychological Measures


(Matching groups on premorbid IQ)

- > MANOVA was not significant F(30,7620) = 1.28, p = 0.14,eta squared = 0.005
- > On average, the MTBI group performed 0.03 of a standard deviation more poorly than either control group

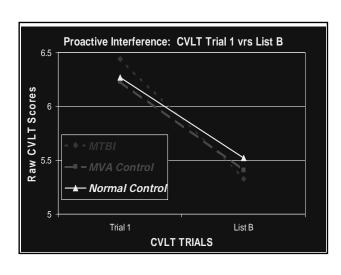
Current Cognitive Functioning: Examples of the 14 Measures

BUT: Subtle Attention Problems

- Using the power of a within subject design (repeated measure within the same subject) can we detect subtle problems with attention?
- Attention is the neuropsychological domain that may be accounting for the reported memory complaints

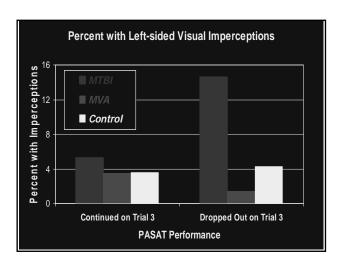
PASAT Findings

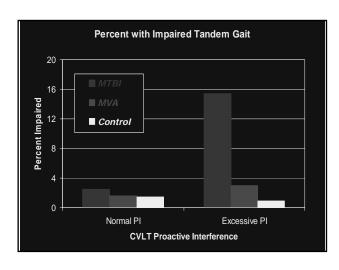
- On this difficult measure of sustained concentration, working memory, and cognitive flexibility
 - Subjects with mTBI "dropped out" of the test at a higher rate than "Normal Controls" or "MVA (non-TBI) Injury Controls"


California Verbal Learning Test

- ➤ List A Five learning trials of 16 words
- ➤ List B One learning trial different 16 words
- > Test for memory of List A

California Verbal Learning Test


Proactive Interference – previously learned material interferes with learning of new material


--Memory for List B relative to memory for the 1st trial of List A

CVLT Memory Findings: Proactive Interference

- On a measure of proactive interference, i.e., the ability to "screen out" the effects of previous cognitive tasks on subsequent cognitive tasks
 - Subjects with mTBI had a higher rate of proactive interference than "Normal Controls" or "MVA (non-TBI) Injury Controls"

These Long term Subtle Attention Problems in mTBI had "External" Neurological Correlates

- Excessive problems on the PASAT were associated with subtle visual inattention problems on formal visual examinations
- Excessive proactive interference was associated with higher rates of impaired tandem gait on formal neurological examinations

Neuropsychological Findings: Conclusions

- Most cognitive sequelae associated with MTBI resolves by 3 months post-injury
- > Evidence for subtle long-term problems with complex attention (small effect)
- > Subtle complex attention problems have external neurologic correlates
- > Need prospective study replication!

Cognitive Sequelae

What we don't know...

Unresolved Issues

- Multiple concussions versus single concussions
 - Single concussions resolve w/in 30 days: Do multiple concussions resolve?
 - Multiple concussions are associated with higher levels of trauma exposure: So is it multiple concussions or additional trauma exposure causing increased symptoms?

Multiple Concussions

- Adverse long-term effects on cognitive performance (Collins et al., * 1999; Moser & Schatz, 2002; Moser et al., 2005; Wall et al., 2006),
- No adverse effect (De Beaumont et al., 2007;* Iverson et al., 2006; Pellman et al., 2004).
- Those studies that have found adverse effects found these effects on tests of attention, executive functions, psychomotor speed and total symptoms reported.
 - Notably, these studies did not examine psychological variables and relied exclusively on samples of athletes.

Unresolved Issues (continued)

➤ Treatment: Diagnosis-based, Symptombased, Both; Integrated Interdisciplinary Treatment vrs Sequential; etc.

Treatment of Mild TBI

- ➤ A standardized postconcussion program developed by Mittenberg (1996)
- Patients receive a 10 page manual, <u>Recovering From Head Injury: A Guide for</u> Patients
 - Focus on a reattribution of symptoms to:
 1) selective attention, 2) normal transient responses to stress, and 3) anxietyarousing or depressive self-statements
- Therapist provides stress management and cognitive behavioral therapy for several weeks

Unresolved Issues (cont.)

- Differentiating among overlapping conditions: mTBI, PTSD, Depression, Insomnia, Pain, Somatoform disorders, etc.
- Risks versus Benefits of population screening for mTBI