Today is PTSD Awareness Day

This webinar is sponsored by the Department of Veterans Affairs Employee Education System, Palo Alto Health Care System, and Office of Public Health

Diagnosis & Treatment of TBI and PTSD

Steven Chao MD, PhD

VA Palo Alto Health Care System

Marylene Cloitre, PhD

National Center for PTSD

Moderated by

J. Wesson Ashford, MD, PhD

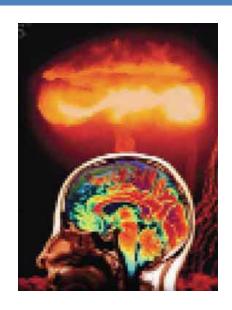
War-Related Injuries and Illnesses Study Center (WRIISC)

Disclaimer

The views expressed in this presentation are those of the authors and Do NOT reflect the official policy of the

Department of Veterans Affairs

or


the United States Government

Background- TBI

- Traumatic brain injury (TBI)
 - Injury to the intracranial structures following physical trauma to the head
 - vs. Head Injury both intracranial and extra-cranial structures (scalp and skull)
- Epidemiology
 - → 1.5 million Americans suffer a TBI each year
 - >57 million individuals worldwide hospitalized by 1 or more TBI
 - It is referred as the "signature injury" of OEF/OIF
 - TBl is the major cause of disability in young adults

Background - VA/DOD Definition of TBI

- A traumatically induced structural injury AND/OR physiologic disruption of brain function as a result of an external force with a new onset or worsening of at least one of the following clinical signs immediately following the event:
 - Any period of loss of consciousness
 - Any loss of memory for events immediately before or after injury
 - Any alteration in mental state at the time of injury
 - Neurologic deficits
 - Intracranial lesion

Background - TBI Classification

 Mild, moderate, or severe based on simple cognitive and motor evaluations such as the Glasgow Coma Scale (GCS)

□ GCS 13-15

Mild

□ GCS 8-12

Moderated

□ GCS <8

Severe

Mechanism:

Primary injuries - direct result of trauma

Secondary injuries - complications of 1^o lesions

Location

- Penetrating/open
- Blunt/closed

Background - mild TBI (mTBI)

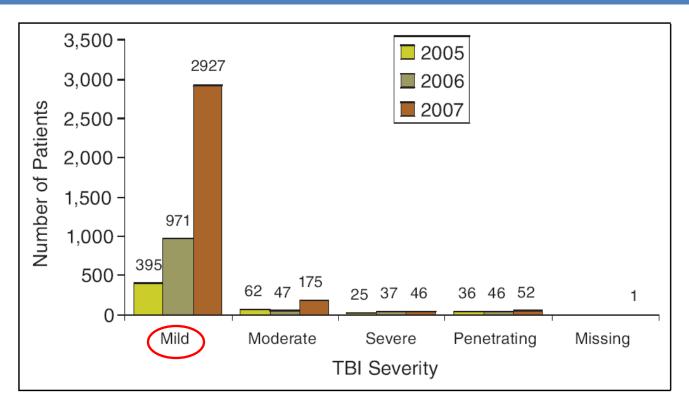


FIGURE 2-1 Severity of TBI cases treated at DVBIC Sites, 2005–2007. Source: Labutta, 2008.

Prevalence, Duration and Characteristics of mTBI in OIF/OEF Veterans

Approximately 18% of returning soldiers have been identified as having mild Traumatic Brain Injury, primarily due to exposure to blasts (see Hoge et al, 2008)

Posttraumatic Stress Disorder (DSM IV criteria)

- □ Re-experiencing /intrusive symptoms (1 of 4)
 - Flashbacks
 - Nightmares
 - intrusive recollections of trauma
 - intense psychological distress or physiological reactivity
- Avoidance/Numbing symptoms (3 of 7)
 - avoid thoughts feelings or conversations related to trauma

- Avoid situations related to trauma
- social withdrawal
- emotional numbing
- ☐ Hyper-arousal symptoms (2/5)
 - sleep disturbance
 - Poor concentration
 - outbursts of anger, irritability
 - exaggerated startle response.
- ☐ Duration >1 month

TBI and Rates of PTSD

2525 Army infantry soldiers 3-4 months after return from year long deployment

Injury with loss of Consciousness (n=124)	Injured with Altered mental Status (n=260)	Other Injury (n=435) *ref	No Injury (n=1706)
43%	27%	16%	9.7%

* Hoge et al, 2008 NEJM

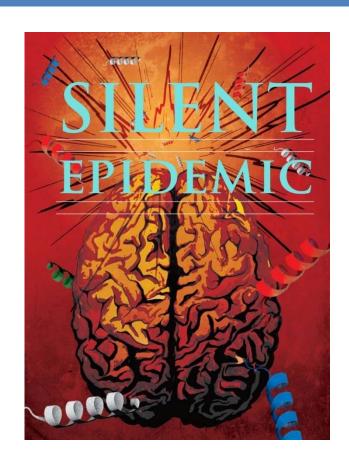
Traumatic Brain Injury

Steven Z. Chao, MD, PhD

Department of Neurology
VA Palo Alto Health Care System

Background-mild TBI

- Head Injury Interdisciplinary Special Interest Group of the American Congress of Rehabilitation Medicine -mTBI
 - Any period of loss of consciousness
 - Any loss of memory for events immediately before or after the accident
 - Any alteration in mental state at the time of the accident
 - Focal neurologic deficits that may or may not be transient
- American Academy of Neurology concussion
 - Grade 1
 - Transient confusion with no loss of consciousness and concussion symptoms that resolve in less than 15 minutes
 - □ Grade 2
 - Similar, except that symptom resolution occurs beyond 15 minutes
 - Grade 3
 - Any loss of consciousness



Background-mTBI

- mTBI "silent epidemic"
 - Diffuse changes resulting in disruptions of the axolemma and neurofilament organization
 - Multifocal lesions are labeled diffuse axonal injury or traumatic axonal injury (TAI).

How do we diagnosis TBI

- Clinical history
 - Witness/ medical records
 - Self report
- Residual symptoms
 - Cognitive impairment
 - Physical limitation
 - Mood/Anxiety
- Biomarkers
 - Blood/CSF
 - Imaging
 - Pathology

Complicated Mild TBI

□ When clinical neuroimaging findings are present following a mTBI, the classification changes to "complicated mTBI," which has a 6-month outcome more similar to moderate TBI

Williams et al., Neurosurgery 1990;27(3):422-8. Kashluba et al., Arch Phys Med Rehabil 2008; 89(5): 904-11.

From Belanger, 2009

Imaging Classification of TBI Primary injury

Extra-axial injury

- Epidural hematoma
- Subdural hematoma
- Sub-arachnoid hemorrhage

Intra-axial injury

- Axonal injury
- Cortical contusion
- Intra-cerebral hematoma

Vascular injury

- Dissection
- Carotid cavernous fistula
- Arterio-venous dural fistula
- Pseudoaneurysm

Imaging Classification of TBI Secondary injury

Acute

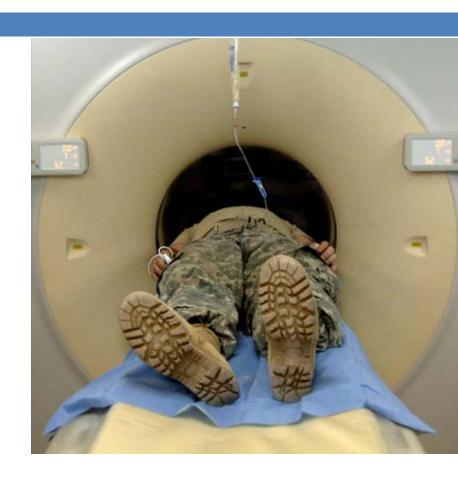
- Diffuse cerebral swelling/dysautoregulation
- Brain herniation
- Infarction
- Infection

Chronic

- Lepiolmeningeal cyst
- Hydrocephalus
- Encephalomelacia
- Cerebrospinal fluid leak

Neuroimaging in TBI

- □ X-ray
- MRI
- Functional study


Neuroimaging- X-Ray

- Poor predictors of intracranial pathology
- mTBI rarely demonstrate significant findings
- Severe TBI Negative findings may mislead medical management

Neuroimaging in TBI

- □ X-ray
- - Indication
 - Limitation
- MRI
- functional study

Neuroimaging - CT

Indication

Le and Gean. Mount Sinai J Med 2009

- Moderate and severe TBI (GCS< 12)</p>
- Mild TBI
 - Age >60 years
 - Persistent neurological deficit
 - Headache or vomiting
 - Amnesia, loss of consciousness longer than 5 minutes
 - Depressed skull fracture
 - Penetrating injury
 - Bleeding diathesis or anticoagulation therapy

Neuroimaging - CT

- Modality of choice in acute setting
 - Fast, widely available
 - Highly accurate for skull fractures and intracranial hemorrhage
 - Life-support and monitoring easier than MR
 - Better at radio-opaque foreign bodies
 - Non-contrast CT first for hemorrhage
 - CT angiography has better resolution

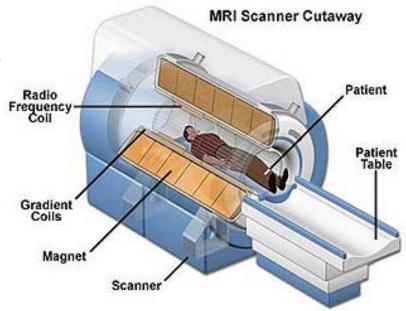
Le and Gean, Mount Sinai J Med 2009

Neuroimaging - CT

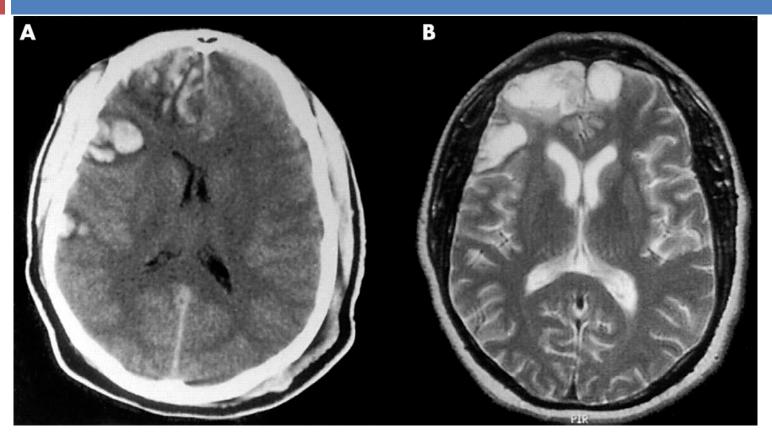
- Limitation-Low sensitivity for mild TBI
 abnormal findings on clinical computed tomography
 - □ 5% GCS 15
 - □ 20% GCS 14
 - □ 30% GCS 13

Borg et al. J Rehabil Med 2004

Neuroimaging in TBI

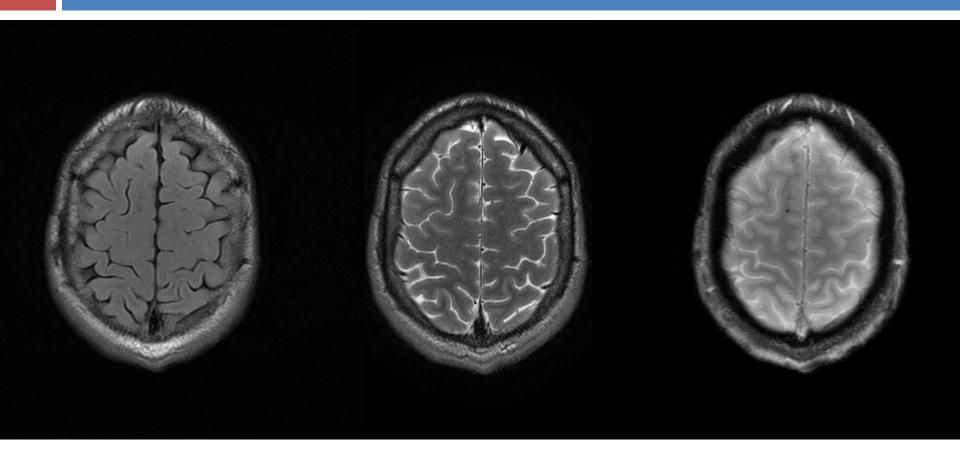

- □ X-ray
- MRI
 - Indication
 - Compare to CT
 - FLAIR
 - □ GRE (T2*)
 - DTI
- Functional study

- Indication
 - acute TBI
 - neurological findings are unexplained by the CT findings
 - subacute
 - chronic TBI



- T2/Fluid Attenuated Inversion Recovery (FLAIR)
 - Focal cortical injuries (e.g. contusions)
 - White matter shearing injuries
 - SAH by suppressing the bright CSF signal (FLAIR)
 - Diffuse axonal injuiy (DAI) particularly can be seen in the corpus callosum and the fornix
 - Sagittal and coronal FLAIR

Greenwood, J Neurol Neurosurg Psychiatry 2002



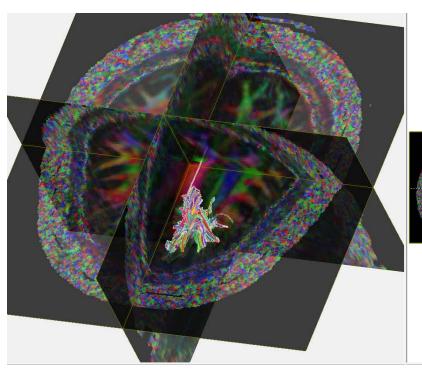
- Gradient-Recalled-Echo (GRE)/ T2*-Weighted
 /Susceptibility weighted imaging (SWI)
 - Highly sensitive to ferritin & hemosiderin (breakdown products of blood)
 - Hemosiderin can persist indefinitely- good for remote TBI
 - Limited in the evaluation of cortical contusions of the inferior frontal and temporal lobes because of the inhomogeneity artifact induced by the sinuses and mastoid air cells.

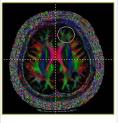
MRI vs. CT

- Comparable
 - Acute epidural hematoma(EDH)
 - Subdural hematoma (SDH)
- More sensitive (43-68% mTBI has negative scan)
 - Subtle extra-axial smear collections (blood)
 - Nonhemorrhagic lesions
 - Brainstem injuries
 - Subarachnoid hemorrhage (SAH)
 - 93% of nonhemorrhagic lesions were detected by MRI but only 18% were appreciated on CT
 - Among TBI patients with normal CT scans 30% had abnormal MRI (Bazarian 2007)

Hofman et al, Am J Neuroradiol 2001 Hughes et al, Neuroradiology 2004 Gentry et al, AJR Am J Roentgenol1988

MRI still misses many lesions


- Post concussive syndrome
 - Headaches, dizziness, fatigue
 - Anxiety
 - Attention deficits and memory problems
 - Mild encephalopathy (a few days to weeks)
 - 30% continue to have persistent syndrome
 - 43-68% mTBI has negative MRI scan



Neuroimaging - MRI-DTI

Diffusion Tensor Imaging (DTI)

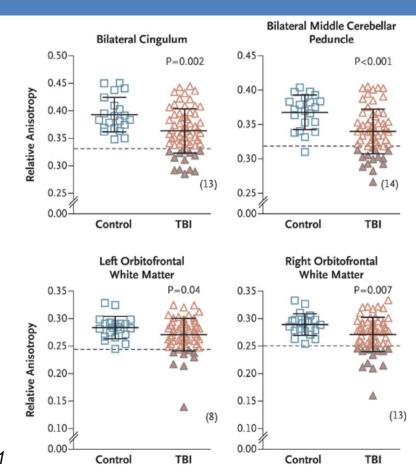
- Identify and quantify the microstructural changes that cannot be detected by CT and conventional MRI
- Certain DTI parameters may serve as a biomarker for microstructural white matter injury
- May sever as better assess mTBI at both acute and chronic stages.

Neuroimaging - MRI-DTI

 Changes in DTI metrics at acute and chronic time points in symptomatic TBI patients

	Acute TBI	Chronic TBI
Fractional anisotropy	↑	\downarrow
Radial diffusivity	\downarrow	↔or ↑
Axial diffusivity	\leftrightarrow or \downarrow	↔or ↑

Niogi & Mukherjee, J Head Trauma Rehabil 2010



Neuroimaging - MRI-DTI

- Abnormalities revealed on DTI with mTBI
- None had detectable intracranial injury on CT head
- In 18 of the 63 subjects with TBI, a significantly greater number of abnormalities were found on DTI.
- Follow-up DTI scans in 47
 subjects showed persistent abnormalities

Mac Donald et. Al. NEJM 2011

Neuroimaging in TBI

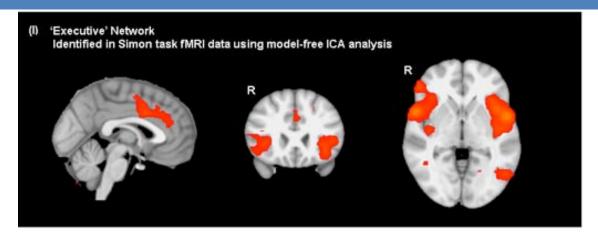
- □ X-ray
- □ MRI
- Other functional study
 - PET
 - SPECT
 - f-MRI

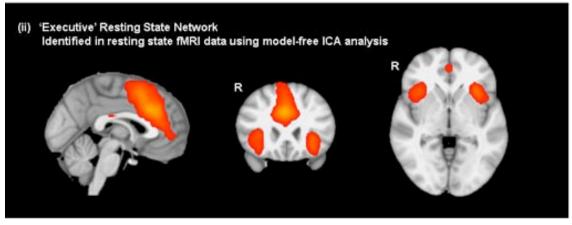
Neuroimaging - PET

- Positron Emission Tomography
 - Measures regional brain metabolism with 2-Fuoro-deoxyglucose(FDG)
 - In animal studies
 - Acutely injured show increased glucose metabolism
 - Followed by a prolonged period of regional hypometabolism lasting up to months
 - Human studies has no consistent results
 - Both hypermetabolism and hypometabolism in the same regions across different TBI patients

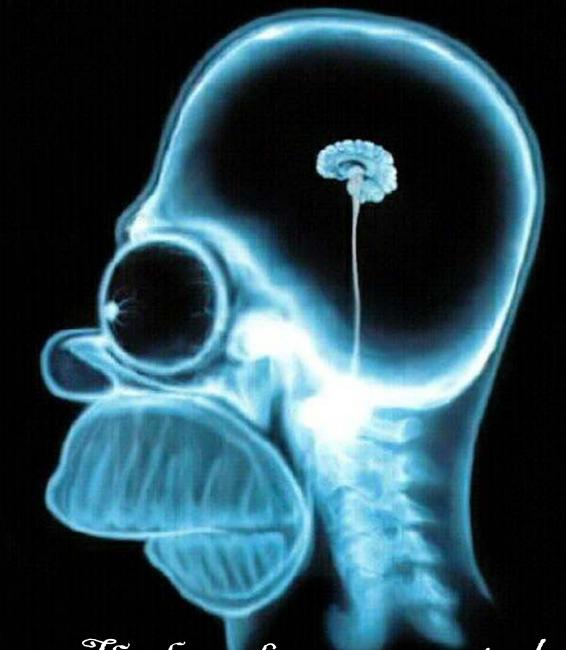
Neuroimaging - PET

- □ 16 WRIISC pt with TBI histroy
- 4 abnormal MRI
- □ 5 abnormal PET


Neuroimaging-SPECT


- Single Photon Emission Tomography (SPECT)
 - Nuclear medicine study that measures cerebral blood flow (CBF)
 - Potentially provide a better long-term prognostic predictor
 - Worse prognosis
 - multiple CBF abnormalities
 - larger CBF defects
 - involve the basal ganglia, temporal and parietal lobes, and brainstem
 - less sensitive in detecting small lesions that are visible on MRI
 - SPECT imaging is complementary to MRI

Functional MRI - Resting state



Neuroimaging-What else?

- Diffusion-Weighted Imaging
- Diffusion-Spectrum Imaging
- Magnetic Resonance Spectroscopy
- Magnetization Transfer Imaging
- Magnetic Source Imaging
- Functional MRI

Thank you for your attention!

mTBI and PTSD: Applicability of Skills Training in Affect and Interpersonal Regulation (STAIR)

Marylene Cloitre, PhD

Associate Director of Research,

National Center for PTSD

Professor,

Department of Psychiatry

New York University Medical Center

Traumatic Brain Injury: Defined by severity of injury at time of event

Mild	Moderate	Severe
Altered or Loss of Consciousness (LOC)<30 minutes with normal CT and/or MRI	LOC<6 hours with abnormal CT and/or MRI	LOC>6 hours with abnormal CT and/or MRI
Glasgow Coma Scale (GCS) 13-15	GCS 9-12	GCS<9
Post Traumatic Amnesia PTA) <24 hours	PTA<7 days	PTA>7days

Post-Concussive Syndrome (ICD-10 Criteria)

- History of Traumatic Brain Injury
- □ Three or more of the following:
 - Headache
 - Dizziness
 - Fatigue
 - Irritability
 - Insomnia
 - Concentration difficulty
 - Memory Difficulty
 - Intolerance of alcohol or emotion

Post-Concussive Syndrome (DSM-IV Criteria)

- History of Traumatic Brain Injury
- Cognitive Deficit
 - Attention (focus, sustained tracking)
 - Memory
- Symptoms persist more the 3 months
- Symptoms that begin/worsen after injury
- Exclusion of dementia from other cause

Prevalence, Duration and Characteristics of mTBI in OIF/OEF Veterans

Approximately 18% of returning soldiers have been identified as having mild Traumatic Brain Injury, primarily due to exposure to blasts (see Hoge et al, 2008)

Prevalence, Duration and Characteristics of mTBI in OIF/OEF Veterans

- Majority of cases resolve in 4-12 weeks (Collins, 1999; Moore, 2006)
- However, longer duration of post-concussive symptoms have been noted with substantial numbers having symptoms from 12 to 36 months.
- Longer recovery associated with presence of comorbid psychiatric disorders including Posttraumatic Stress Disorder, Depression, Pain and Substance Abuse

Posttraumatic Stress Disorder (DSM IV criteria)

- Re-experiencing /intrusive symptoms (1 of 4)
 - Flashbacks
 - Nightmares
 - intrusive recollections of trauma
 - intense psychological distress or physiological reactivity
- Avoidance/Numbing symptoms (3 of 7)
 - avoid thoughts feelings or conversations related to trauma
 - Avoid situations related to trauma

- social withdrawal
- emotional numbing
- Hyper-arousal symptoms (2/5)
 - sleep disturbance
 - Poor concentration
 - outbursts of anger, irritability
 - exaggerated startle response.
- Duration >1 month

TBI and Rates of PTSD

2525 Army infantry soldiers 3-4 months after return from year long deployment

Injury with loss of Consciousness (n=124)	Injured with Altered mental Status (n=260)	Other Injury (n=435) *ref	No Injury (n=1706)
43%	27%	16%	9.7%

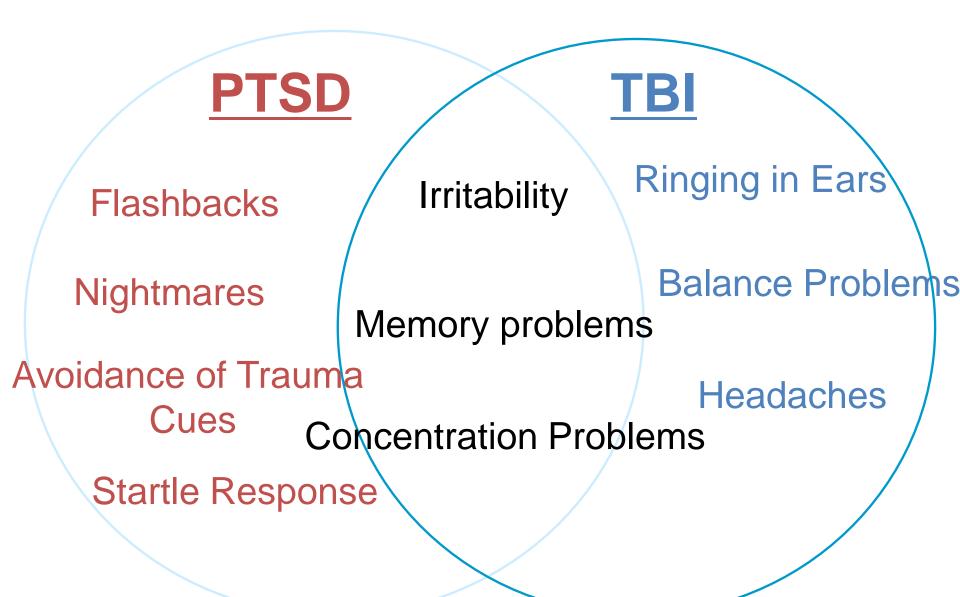
* Hoge et al, 2008 NEJM

TBI and Rates of PTSD: Most frequently reported (percent endorsed) postconcussive symptoms

	Injury with loss of Consciousnes s (n=124)	Injured with Altered mental Status (n=260)	Other Injury (n=435) (Ref Group)	No Injury (n=1706)
Irritability	57 *	48	37	25
Concentration Problems	31 *	26	18	10
Memory Problems	25 *	16	14	7
Ringing in Ears	24 *	18	14	6
Balance Problems	8 *	7	3	2

^{*} Sig greater than ref group

Hoge et al, 2008 NEJM



TBI and Rates of PTSD: Most frequently reported (percent endorsed) postconcussive symptoms

	Injury with loss of Consciousne ss (n=124)	Injured with Altered mental Status (n=260)	Other Injury (n=435) *ref group	No Injury (n=1706)
Irritability	57* PM	48	37	25
Concentration Problems	31 * PM	26	18	10
Memory Problems	25 * PM	16	14	7
Ringing in Ears	24 *	18	14	6
Balance Problems	8 *	7	3	2

^{*} Sig greater than reference group PM – PTSD mediated

Distinct and Overlapping Symptoms

mTBI and PTSD share associated problems

- Depression
- □ Anxiety
- Interpersonal problems (aggression)
- Physical health problems (muscle, joint, back pain; gastric distress)

Significance of Comorbidity: Physical Health and Service Utilization (percent endorsing)

	Injury with LOC (typically ≤ 2-3 min) (n=124)	Injured with Altered mental Status (n=260)	Other Injury (n=435) *ref group	No Injury (n=1706)
\geq 2 medical visits for physical condition	43 *	33	29	20
≥ 2 missed workdays due to illness	23 *	16	15	7
PHQ score ≥ 15	25 *	16	11	5
Poor overall health	13 *	7	7	2

^{*} Sig greater than reference group

Significance of Comorbidity: Physical Health and Service Utilization (percent endorsing)

	Injury with LOC (typically ≤ 2-3 min) (n=124)	Injured with Altered mental Status (n=260)	Other Injury (n=435) *ref	No Injury (n=1706)
≥ 2 medical visits for physical condition	43 * PDM	33	29	20
≥ 2 missed workdays due to illness	23 * PDM	16	15	7
PHQ score ≥ 15	25 * PDM	16	11	5
Poor overall health	13 * PDM	7	7	2

^{*} Sig greater than reference group

PDM – PTSD and Depression mediated

Treatment Recommendations

VA Consensus Conference on Practice Recommendations for Treatment of Veterans with Comorbid PTSD, Pain and PTSD (2010)

- □ For TBI
 - Education to normalize symptoms and provide expectation of rapid recovery
 - Symptom-specific relief
- For TBI and PTSD
 - Interdisciplinary Treatment Planning
 - Family Engagement
 - Use current clinical practice guidelines for mTBI and PTSD in an integrated way

Treatment Recommendations based on Evidence

- Cognitive-Behavioral Treatment (CBT) is widely accepted as treatment for PTSD (Foa et al, 2008)
- Two case studies support use of CBT for patient With PTSD After TBI (Batten, & Pollack, 2008; McGrath, 1997).
- One RCT of mild TBI with ASD. Patients were able to complete and benefit from CBT and was superior to supportive therapy (Bryant et al, 2003).

Domains of Cognitive-Behavioral Techniques

- Exposure Procedures
- Anxiety Management Procedures
- Cognitive Restructuring

Cognitive Processing Therapy

- Psychoeducation
- □ Written exposure
 - impact of trauma on thoughts about self and others
 - interpretations about traumatic event(s)
- Challenging patient's interpretations about traumatic event(s)
- Cognitive restructuring of more generalized beliefs disrupted by traumatic event(s)

Exposure Therapy

- Techniques to promote confrontation with feared objects, situations, memories, and images
- Prolonged Exposure
 - Psychoeducation
 - Breathing retraining
 - Prolonged, repeated exposure to the trauma memory (imaginal reliving)
 - Repeated in vivo exposure to objectively safe situations being avoided due to trauma-related fear

Other Considerations in the use of CBT

- CBT may be of particular value to people with cognitive impairments because of structured, educative and interactive nature
- VA Consensus Conference on Practice Recommendations for Treatment of Veterans with Comorbid PTSD, Pain and PTSD (2010) acknowledged the potential value of skills training and recommend continued research
- Application of enhanced CBT treatments which focus on emotion dysregulation may be relevant

Complex PTSD DSM IV: "Associated Features of PTSD"

- Criterion A: Chronic, repeated, prolonged traumas, often beginning in early life and of an interpersonal nature
 - Childhood Abuse
 - Domestic Violence
 - Prisoner of War
 - Exposure to civil war (genocide)
 - Prostitution Brothels/ Global Slave Trade

Emotion Regulation Difficulties DSM-IV "Associated Features of PTSD"

- Easy provocation, high reactivity to emotionally evocative stimuli, difficulty calming down
- □ Examples:
 - fear/dissociation
 - anger
 - anxiety
 - sadness

McDonaugh-Coyle et al, 2001 Orsillo et al, 2004 Protopopescu et al, 2005 Tull et al, 2007

Interpersonal Problems

DSM-IV "Associated Features of PTSD"

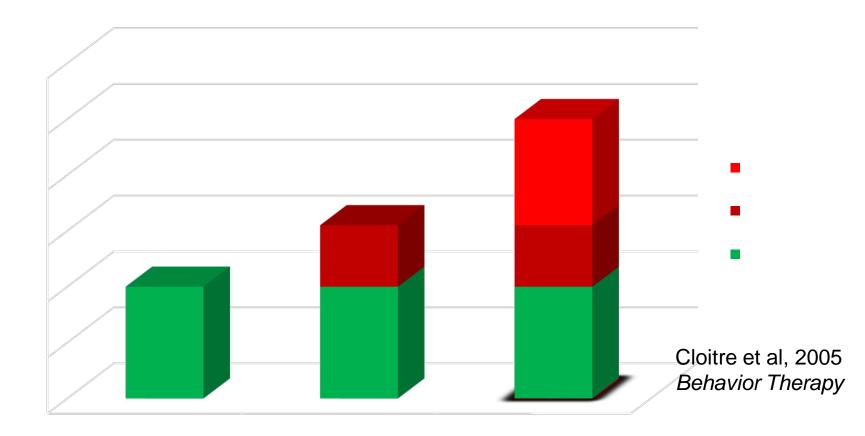
- Martial and dating problems
- Low satisfaction in relationships
- Parenting problems
- Poor functioning at work
- □ Social isolation
- Low perceptions of support

Briere et al, 2004 Claussen et al, 2002 Punumaki et al, 2004

PTSD as an Emotion Dysregulation Disorder

 Alternating symptoms of hyperarousal and emotional avoidance/numbing (affect dysregulation)

Detachment and constricted affect vs.
 outbursts of anger and aggressive
 behaviors


Consequences of Emotion Regulation Difficulties

- Among problems that PTSD (veterans) patients complain about- anger is common and distressing to patients (Pitman et al, 1987)
- It has been directly linked to interpersonal disturbances
 - In intimate and social relationships (Riggs et al, 1992)
 - In parent functioning and relationships with children Bosquet
 Egeland, 2006; Weems & Silverman, 2006)

Functional Impairment

Treatment Implications: Hybrid of DBT and PE

Two - Phase Treatment:

- I. Skills Training in Affective and Interpersonal Regulation (STAIR)8 weekly sessions
- II. Narrative Story Telling (NST) a modified version of prolonged exposure (PE) via repeated narration of events, meaning analysis, self-other schema analysis 8 weekly sessions

PHASE I: STAIR

SKILLS TRAINING IN AFFECT AND INTERPERSONAL REGULATION

THE RESOURCE OF HOPE

Session 1: Introduction to Treatment

THE RESOURCE OF FEELINGS

Session 2: Emotional Awareness and the Power of Naming

Session 3: Emotion Regulation

Session 4: Emotionally Engaged Living

THE RESOURCE OF CONNECTION

Session 5: Understanding Relationship patterns (Schemas)

Session 6: Changing Relationship Patterns (Alternative Schemas

and Role)

Session 7: Agency in Relationships (Assertiveness and Control)

Session 8: Flexibility in Relationships (Multiple Working Models)

Definition of Emotion Regulation

NOT Anxiety Reduction

Definition of Emotion Regulation

- Processes by which an individuals monitors, modifies and expresses emotions to achieve goals (Thompson, 1994)
- ☐ The capacity to manage internal arousal within a performance optimizing range (Cicchetti et al., 1991)
- □ The ability to inhibit or control emotions as well as activate behaviors guided by feelings for a particular purpose (Valiente & Eisenberg, 2006)

Definition of Emotion Regulation

 A "Comfort Zone" that allows the individual to live in the moment and engage fluidly with the environment

Involves not only down-regulation of negative affect

But also enhancement of positive affect

Assessment of Emotion Regulation: Negative Mood Regulation Scale (NMR)

When I'm upset I believe that: "That's not like me...

That's a lot like me"

Physiological Domain:

If take a walk I'll feel better I can breathe my way through

Score of 100 = Community Average

Cognitive Domain:

I tell myself it will last only a little while I distract myself

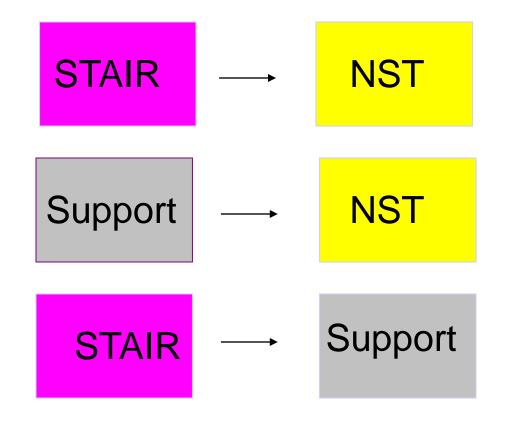
Behavioral/Interpersonal Engagement Domain:

I can call a friend
I do something nice for some one

Negative Mood Regulation Scale Cantanzaro & Mearns, 1990

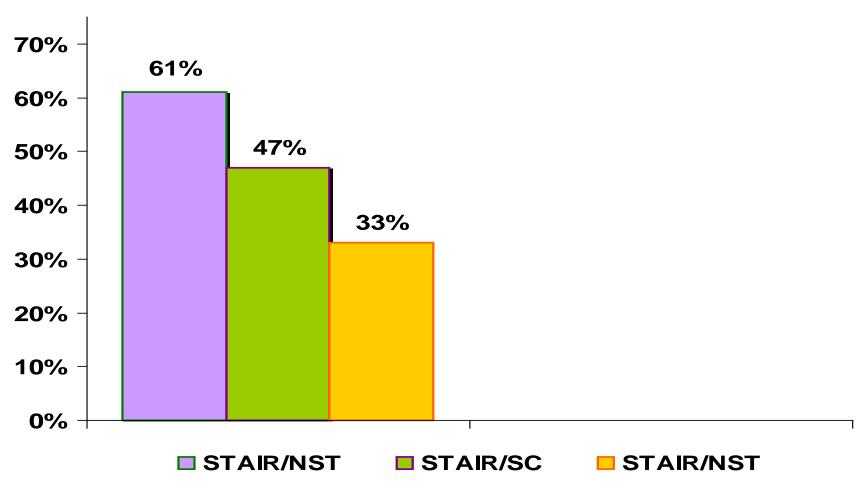
Emotion Regulation Strategies

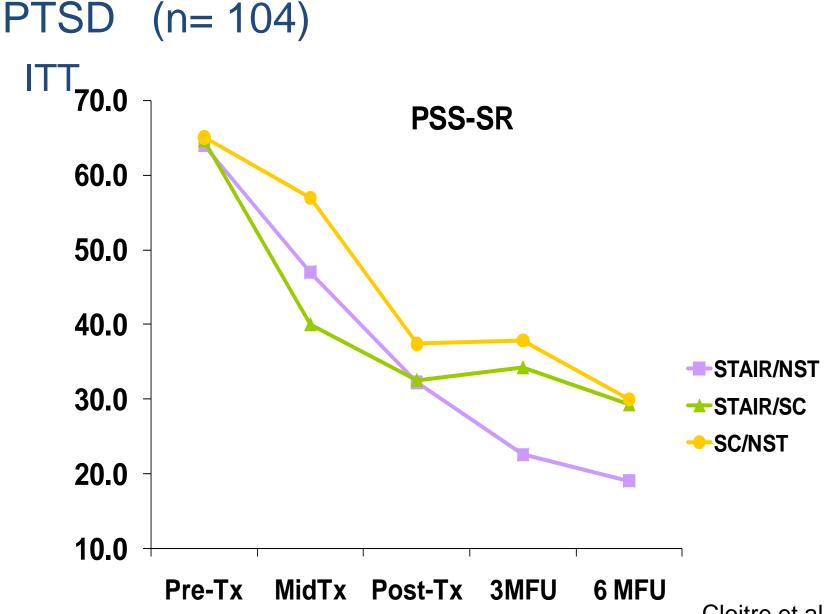
- <u>Breathe</u> Entraining cognitive and bodily processes (decrease disorganization)
- Problem Solving Skills create boundaries around problems they become manageable, not overwhelming (cognitivesomatic-behavioral strategies to targeting problems)
- Enhance Self-Soothing Skills exercise, walking, listening to music, quiet places, shower (learn triggers/be proactive)
- <u>Learn Distress Tolerance</u> in service of identified goals (identify goals, use all of the above to reach them).

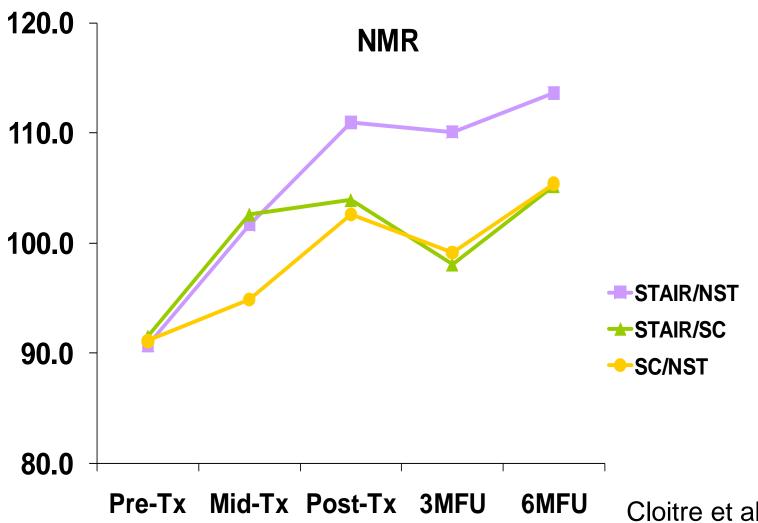

Impact of Emotions on Relationships and Social Functioning

- Education about patterns of relationships/role of emotions
- Role play in practicing alternatives in sessions
- Practice at home
- Different actions are required in different settings an different relationships (learn what they are)

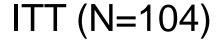
Study Design: RCT with Three Treatment Conditions

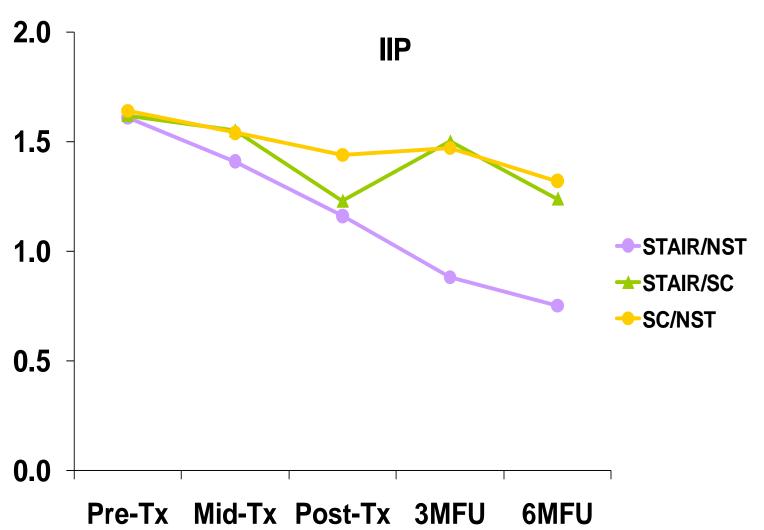



OUTCOMES

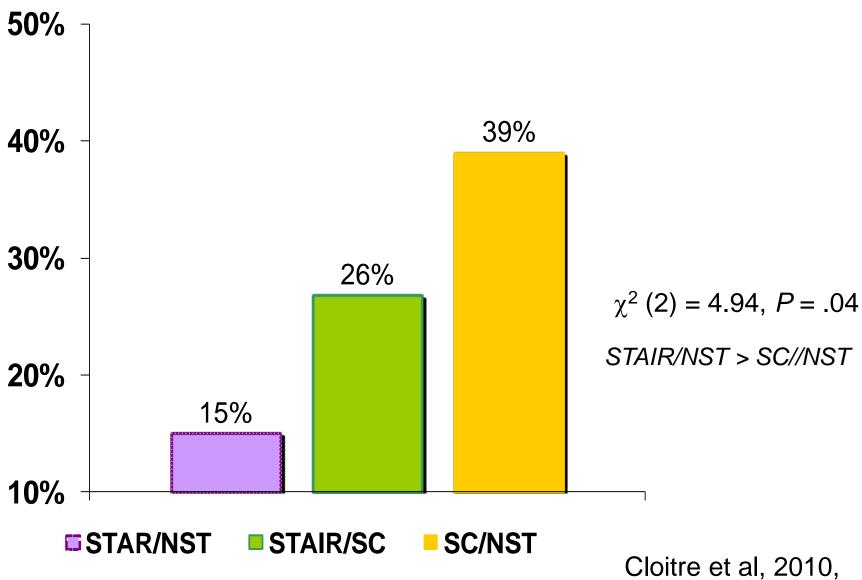

CAPS Diagnoses at Post Treatment

PTSD-free





Emotion Regulation Problems ITT (N=104)

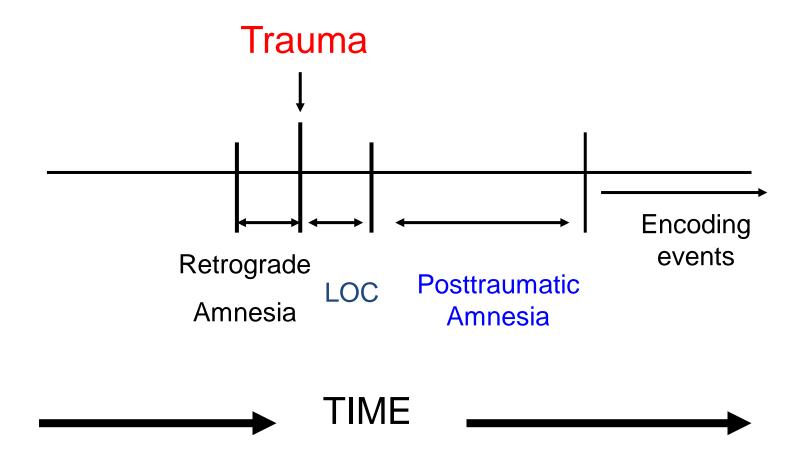


Interpersonal Problems

Dropout Rate by Treatment Condition

SYMPTOM WORSENING: A clinically meaningful deterioration (7 points worse than previous period)

Assessment Period	STAIR/NST	STAIR/SC	SC/NST	Sig (p-value)
Pre-to-Post	3.6% (n=1)	7.4% (n= 3)	15.0% (n=5)	ns
Post-to-6Mo FU	0% (n=0)	22.7% (n=5)	31.3% (n=5)	.006


Benefits of Phase-Based Treatment

- Reduces Dropout relative to exposure focused treatment
- Provide good outcomes in multiple domains:
 - PTSD, Emotion Regulation and Interpersonal Functioning
- Makes a difference in distress during trauma memory work
- Provides continued improvement after treatment ends compared to both treatments

Posttraumatic Amnesia

Explanations for PTSD despite loss of consciousness

- Fear conditioning occurs automatically (nonconsciously) and can explain distress upon exposure to trauma related cue (Criterion B)
- □ There are "islands" of traumatic memories
- Traumatic nature of memories post-event experiences (dead bodies, surgery)
- Inferencing of an event, and reconstruction of memory

Alternative:

Using STAIR alone or in stepped-fashion with Exposure?

- Exposure targets re-experiencing symptoms (intrusive thoughts) and avoidance and has typically required that client required patient to have at least one clear memory of trauma
- Many of the shared symptoms of PTSD and mTBI are "hyperarousal" symptoms (irritability, poor concentration) that skills training is intended to directly address

Using STAIR alone or in stepped-fashion with Exposure?

- If patient has no or few re-experiencing symptoms (possibly related to lack of memory of trauma):
 - Begin with and complete skills training
 - Re-evaluate presence of PTSD and mTBI symptoms
 - Add exposure or cognitive processing of trauma if PTSD is still present
- Research needed comparing STAIR alone versus
 Exposure or in step based algorithm

Summary of STAIR/Ex Research and Activities

Published Trials

- STAIR/Ex vs. WL (Cloitre 2002, JCCP)
- Comparison Study (Cloitre 2010, AJP)
- Flexible Application of STAIR/Ex with 9-11 PTSD (Levitt et al. 2007, BRAT)

Ongoing Trials

- STAIR+PE vs. STAIR+EMDR (Ehring et al, Amsterdam)
- STAIR+Rescripting vs. Rescripting alone (Olff et al, Amsterdam)
- Open Trial (n=31) w fMRI scans obtained before and after treatment

Next Steps

- Multi-site study in Civilian Public Sector Clinics in U.S. (NIMH)
- Web-based Training for STAIR (NCPTSD)

Questions?

Steven Chao MD, PhD

Marylene Cloitre, PhD

J. Wesson Ashford, MD, PhD

Thank you

WRIISC Washington, DC

wriisc.dc@va.gov

1-800-722-8340

WRIISC East Orange, NJ

wriisc.nj@va.gov

1-800-248-8005

WRIISC Palo Alto, CA

wriisc.ca@va.gov

1-888-482-4376

More Information at www.warrelatedillness.va.gov and www.ptsd.va.gov

WRIISC Referrals

WRIISC Washington, DC

wriisc.dc@va.gov

1-800-722-8340

WRIISC East Orange, NJ

wriisc.nj@va.gov

1-800-248-8005

WRIISC Palo Alto, CA

wriisc.ca@va.gov

1-888-482-4376

Primary Care Physicians complete a consult request in our computerized record system or contact the WRIISC nearest you.

More information @ www.warrelatedillness.va.gov