

Inter-relationships Between Post-TBI Sequelae

Northern CA TBI Model System of Care Santa Clara Valley Medical Center www.tbi-sci.org

> Tamara Bushnik, PhD PAVA, January 16, 2009

Partially supported by:

- NIDRR Grant #H133A020524
- Pharmacia Inc. (now Pfizer Inc.)

Common Sequelae after TBI

- Depression
- Sleep disorders/disturbances
- Decreased/ Increased Level of activity
- Pain
- Use of Medications
- Substance use/abuse
- Fatigue

Definition of Fatigue

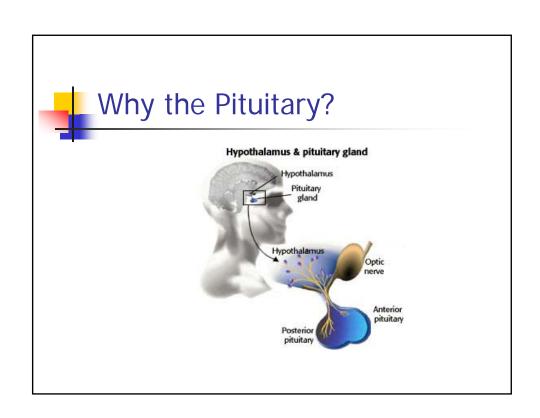
 "the awareness of a decreased capacity for physical and/or mental activity due to an imbalance in the availability, utilization, and/or restoration of resources needed to perform activity"

Aaronson et al, 1999

Fatigue after TBI

- Prevalence rates
 - 50%-80% in people with TBI
 - 10%-28% in people without disability

One of the most common sequelae after TBI


Fatigue after TBI

- Fatigue doesn't go away
 - In a sample of individuals with TBI living in the community
 - 68% reported fatigue 2 years post-injury
 - 73% reported fatigue 5 years post-injury

Possible Contributing Factor

- Hypopituitarism
 - non-specific symptoms of pervasive fatigue, decreases in strength, poor sense of well-being overlap with those after TBI
 - In particular, the syndrome of growth hormone (GH) deficiency, gonadal, adrenal, and thyroid dysfunction

Hypopituitarism after TBI

	Abnormal Level/Stimulation						
	GH	Cortisol	GT	Thyroid			
6-36 mnths post Agha et al, 2004	11% (11/102)	13% (13/102)	12% (12/102)	1% (1/102)			
1-5.3yrs	28%	0%	14%	10%			
Bondanelli et al, 2004	(14/50)	(0/50)	(7/50)	(5/50)			
1 year post	10%	19%	12%	2%			
Agha et al, 2005	(5/48)	(9/48)	(6/48)	(1/48)			
1 year post Tanriverdi et al, 2006	33%	20%	8%	6%			
	(17/51)	(10/51)	(4/51)	(3/51)			
1 year post	29% (11/58)	3%	2%	2%			
Klose et al, 2007		(2/58)	(1/58)	(1/58)			

Hypopituitarism after TBI

- Positive correlation between peak GH levels and
 - Verbal learning
 - Verbal short-term memory (Popovic et al, 2004)
- Positive correlation between hypopituitarism and
 - Unfavorable body composition, sleep, energy, social isolation, overall quality of life (Klose et al, 2007)

Association Between Fatigue, Severity of Injury, Duration Since Injury, and Underlying Factors

Objective

- Examine the relationship between self-reported fatigue and the following potential factors:
 - Demographic characteristics
 - Injury characteristics
 - Sleep abnormalities
 - Affective symptomatology
 - Activity patterns and limitations
 - Substance use
 - Neuroendocrine findings

Research Questions

- Endocrine abnormalities not related to time since injury
- Endocrine abnormalities related to severity of injury
- Identify unique associations between types/levels of fatigue and underlying factors

Procedure

- Participants came to Santa Clara Valley Medical Center
- Session began between 8am and 10am
- All blood tests and questionnaires completed during the 4-hour protocol

Participants

- 119 individuals with TBI
 - at least 1 year post-injury
 - living in the community
 - 16 years of age or older
 - Able to give informed consent

Participants

- Exclude people with diseases/disorders known to produce fatigue
 - Cardiovascular/pulmonary disease, diabetes mellitus, rheumatoid arthritis, multiple sclerosis, cancer, known pituitary abnormalities, chronic fatigue syndrome, pregnancy

Measures

- Demographics
- Injury severity, duration, etiology
- Barroso Fatigue Scale
- Alcohol and substance use
- Pain VAS
- Pittsburgh Sleep Quality Index (PSQI)
- Beck Depression Inventory II (BDI-II)
- Disability Rating Scale
- Craig Handicap Reporting and Assessment Technique (CHART)
 - Cognitive Independence, Occupation, Social Integration
- Neurobehavioral Functioning Inventory (NFI)
 - Somatic, Memory/attention difficulties, Motor impairment

Barroso Fatigue Scale

- 7 subscales: Intensity, ADLs, Socialization, General Impact, Mental Functioning, Timing, Relieving Factors, Aggravating Factors
- Contains
 - Fatigue Severity Scale (FSS)
 - Multidimensional Assessment of Fatigue (MAF) subscales: Severity, ADLs, Distress, Timing, Global Fatigue Index

Measures

- Baseline blood tests:
 - CBC
 - Fasting glucose
 - Fasting basal cortisol
 - Insulin growth factor-I
 - Thyroid (free T4, TSH)
 - Testosterone (males)
- Glucagon stimulation test to assess GH response (0.03 mg/kg im, 1 mg max)

Results

Demographics

- 78 males; 41 females
- Average age: 40+12 years (16-78)
- Duration of injury: 9±7.6 years (1-37)

Demographics

Marital Status	
Single	45% (53)
Married	27% (32)
Sep./Div./Wid.	29% (34)
Productive Activity	
Employed	50% (59)
Unemployed	37% (44)
Other	13% (16)

Injury Characteristics

Etiology	
MVA	63% (71)
Violence	11% (12)
Falls	13% (15)
Other	13% (14)
Duration of Unconsciousness	
<1 d	26% (30)
1 d - <1 wk	21% (24)
1 wk – < 2 wks	15% (14)
> 2 wks	38% (44)

Measurement Scores

■ Disability Rating Scale: 2.4+2.0

BDI-II: 16.0+10.9
PSQI: 7.6+4.5

CHART

■ Cognitive Independence: 76.4±20.1

Occupation: 62.5+31.3Social Integration: 82.4+23.0

NFI

Somatic: 51.0±10.2
Memory: 52.3±10.0
Motor: 49.2±10.2

• GFI: 26<u>+</u>12; FSS: 4.4<u>+</u>1.8

Neuroendocrine Results

Hypothyroid	12% (14)
Low cortisol (<15 mcg/dl)	64% (76)
Low testosterone (n=78)	15% (12)
Low IGF-1	19% (23)
Growth Hormone	
Severe deficiency (<3ng/ml)	34% (39)
Moderate deficiency (3-9.9 ng/ml)	31% (36)
Normal (<u>></u> 10ng/ml)	35% (40)

Neuroendocrine Results

	IGF-1 Level Low Normal		
Growth Hormone (n=59)			
Severe deficiency	6 (26%)	17 (74%)	
Moderate deficiency	3 (19%)	13 (81%)	
Normal	4 (20%)	16 (80%)	

 $X^2=0.37$; df(2); p=0.83

Time Since Injury and Endocrine Abnormalities

		normal I score	Abnormal Cortisol	Abnormal IGF-1		Abnormal Testosterone	Not Menstruating
Time since injury	r	.00	.00	.07	.00	.11	.00
	Ν	114	118	117	117	Men: 77	Women: 25

	P	eak GH	Cortisol	IGF-1	T4 level	TSH	Testosterone
Time since injury	r	11	14	38**	09	.05	20*
injury	Ν	111	118	118	117	117	Men: 77

* p < .05 ** p < .01

Duration of Unconsciousness and Endocrine Abnormalities

Duration of Unconscious	-	Abnormal GH score .00	Co	normal ortisol .00	Abnormal IGF-1 .14*	Abnorn T4 leve	nal Abnormal El Testosterone .00	Not Menstruating .00
Onconscious	Ν	111		115	114	115	Men: 74	Women: 25
	P	eak GH (Cortisol	IGF-1	T4 level	TSH	Testosterone	
Duration of Unconscious	r	09	.09	.01	04	.01	02	
onconscious	Ν	108	115	115	114	114	Men: 74	

* p < .05 ** p < .01

Types/Levels of Fatigue and Associated Factors - Barroso

	Intensity Beta	ADLs Beta	Social Beta	Mental Beta	General Beta
Female	.28**	.26**	.17**	.25**	.17*
BDI-II	.30**	.30**	.44**	.25**	.41**
NFI Memory	.34**			.37**	
NFI Motor		.30**	.24**		
NFI Somatic					.21*
PSQI	.16*				
CHART Social		.18*			
Anti-depressant			.15*		
F	33.78**	24.23**	26.47**	25.29**	22.18**
Adjusted R ²	.57	.54	.49	.40	.45

* *p* < .05 ** *p* < .01

Types/Levels of Fatigue and Associated Factors – MAF & FSS

	Severity Beta	ADLs Beta	Distress Beta	Timing Beta	GFI Beta	FSS Beta
Female	.18*	.30**		.25**	.21*	
BDI-II		.25**	.46**	.27**	.28**	.35**
NFI Memory	.40**			.36**	.30**	
Pain VAS	.39**		.22**		.30**	
NFI Motor		.20*				.33**
CHART Social		21**				
PSQI		.20*				
Anti-depressant						19*
F	38.24**	17.55**	22.01**	26.51**	41.31**	25.28**
Adjusted R ²	.49	.46	.49	.42	.60	.43

* p < .05 ** p < .01

Different Types of Fatigue?

- Intensity (Barroso) memory and sleep
- Severity (MAF) memory and pain
- ADLs (Barroso) motor and social
- ADLs (MAF) motor, social and sleep
- Mental (Barroso) memory
- General Impact (Barroso) somatic

Limitations

- Selection bias of sample
- Cross-sectional nature
- Self-report

Thanks to

- Jeffrey Englander, MD
- Jerry Wright
- Laura Jamison
- Ketra Toda
- Kimberly Emley
- Sue Crawford, RN
- Jackie Romero, RN