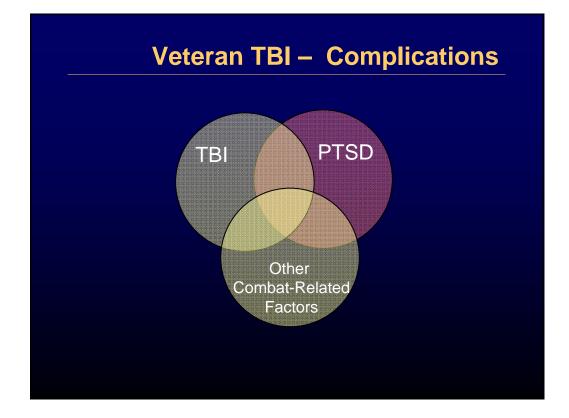
MRI In TBI And PTSD

Norbert Schuff, PhD Wang Zhen, PhD

> Department of Veterans Affairs University of California


Center for Imaging Of Neurodegenerative Diseases / VA Medical Center University of California San Francisco

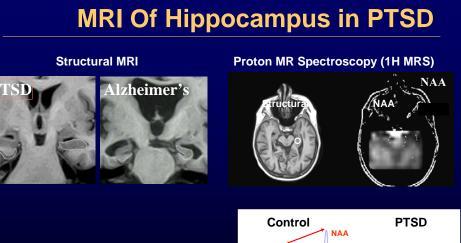
TBI - Problem Statement

- Most knowledge comes from hospitalized civilians
- TBI in returning veterans can be different
 - In many cases less severe

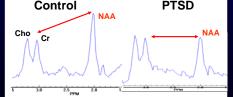
anuary 09 BI Meeting Palo - Norbert Schuff

- Much less documentation
- Diagnosis relies on symptoms
- Symptoms overlap with PTSD
- TBI and PTSD may co-exist
- Huge need for biomarkers of TBI and PTSD
- Our MRI studies in TBI are in progress!

Overall Goal For MRI


- Objective detection of TBI and PTSD
- Improve differential diagnosis
- Predict progression
- Assess efficacy of therapeutic interventions
- Monitor treatments
- Elucidate mechanisms

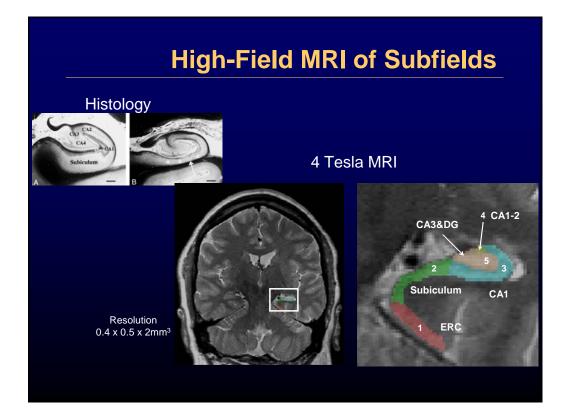
MRI In PTSD: The Hippocampus

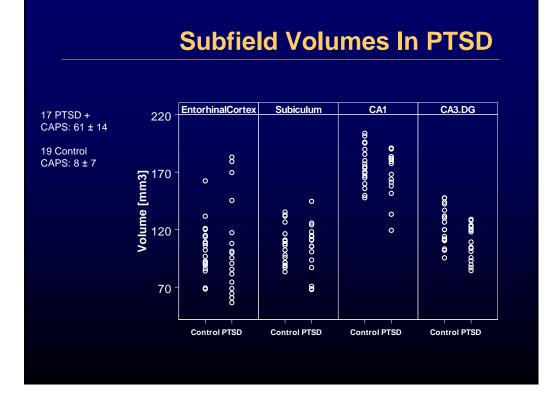

- Plays an important role in
 - Memory (declarative, spatial, and contextual)
 - Perception of chronic pain
- Susceptible to stress hormones (animal studies)
 - Suppressed neurogenesis in the dentate gyrus
 - Remodeling of dendrites in the CA3 region
 - Elevated excitability of hippocampal neurons

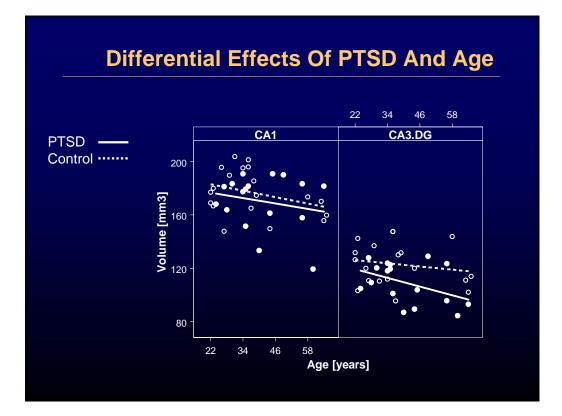
Problems

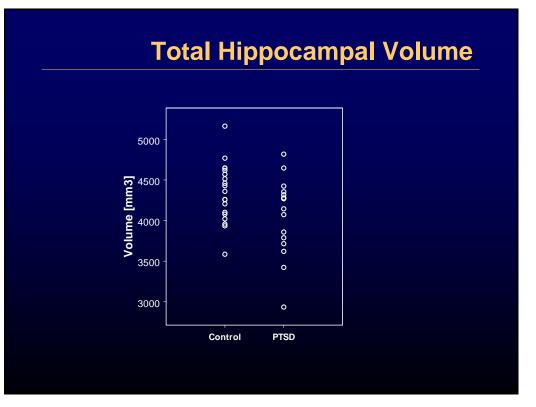
- Findings of hippocampal atrophy in PTSD have been inconsistent
- Alterations are subtle
- Normal aging and many brain disorders affect the hippocampus too

- Hippocampal atrophy in PTSD is subtle
- Reduction of N-acetylaspartate can be substantial but highly variable


Schuff et al. Psychiatry Res. 2008;162(2):147-57.


MRI Of Hippocampal Subfields


- Refine imaging of the hippocampus by resolving its subfields
- Determine if PTSD impacts specific hippocampal subfields

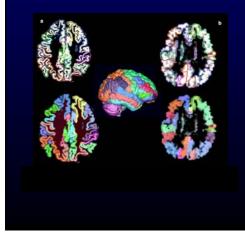

HYPOTHESES

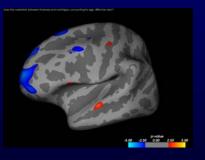
- The dentate gyrus is selectively reduced in PTSD
- The pattern of reduced subfields in PTSD is different from that in aging and other brain disorders, e.g. Alzheimer's disease

Subfields In Other Conditions

By Susanne Mueller et al. Neuroimage. 2008;42(1):42-8

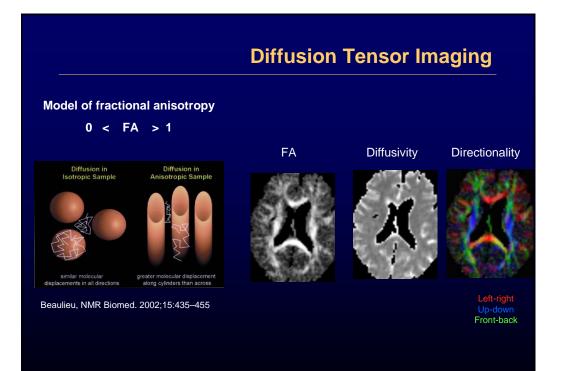
	Control N = 47	MCI N = 14	AD N = 14
ERC	202.4 ± 54.0	168.4 ± 48.0	145.0 ± 53.4*
Subiculum	200.2 ± 36.1	184.7 ± 38.1	154.2 ± 44.9*
CA1	331.4 ± 47.0	285.1 ± 42.5*	264.4 ± 63.1*
CA1-2 transition	20.5 ± 5.5	15.1 ± 3.4 *	14.1 ± 3.8*
CA3&DG	224.4 ± 37.7	227.2 ± 24.3	230.3 ± 54.7
Total Hippocampus	5520.6 ± 770.4	5154.9 ± 817.7	4450.8± 1285.2*

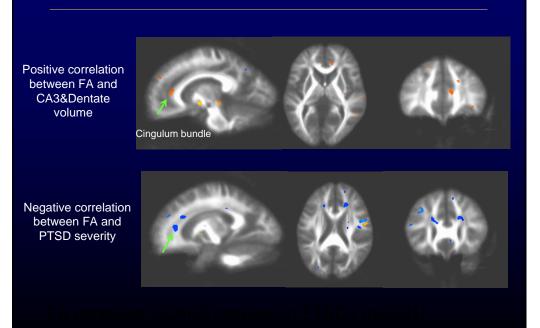

* p<0.05 compared to controls

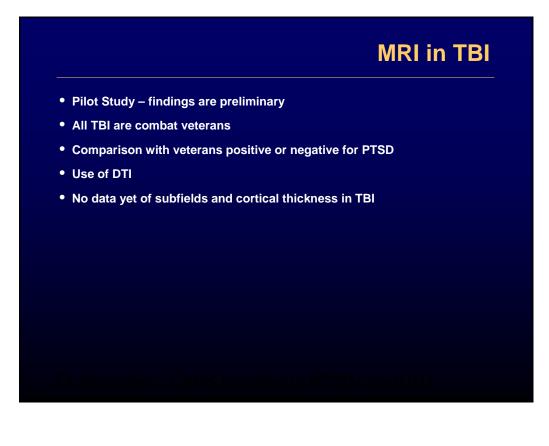

ERC, entorhinal cortex; CA1-2 transition, CA1-CA2 transition zone (definition see text); CA3&DG, CA3 and CA4 together with dentate gyrus

AD: Alzheimer's disease MCI: Mild cognitive impairment, a transitional condition to AD

Cortical Thickness In Relation To Subfields in PTSD

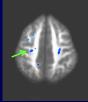

Automated measurements of cortical thickness http://surfer.nmr.mgh.harvard.edu/

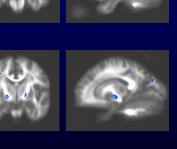


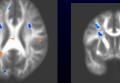

In PTSD, negative correlation between smaller hippocampus and thicker orbitofrontal cortex

ASL- MRI shows hyperperfusion of orbitofrontal cortex in the same subjects

White Matter Abnormalities In PTSD


White Matter Alterations In TPI


Age: 33 ± 8 yrs DOI > 2 Years


PTSD -

N=14 all male Age matched CAPS: 7 ± 7

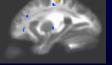
Comparison: Alterations In PTSD

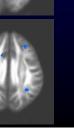
PTSD +

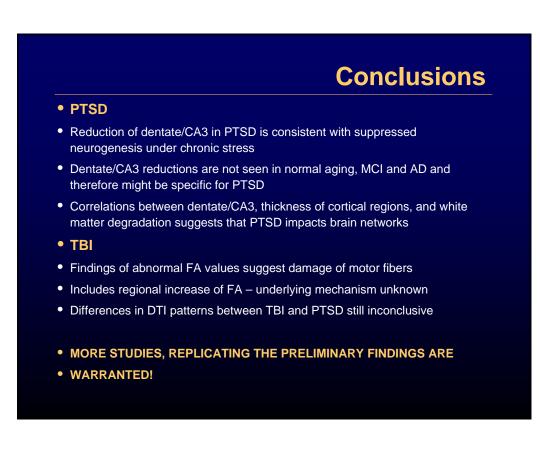
N = 19 all male Age: 40 ± 12 yrs CAPS: 61 ± 13

<u>PTSD –</u>

N=19 all male Age matched CAPS: 7 ± 7


*includes 5 not exposed to trauma





Challenges For MRI in TBI

- Heterogeneity of brain damage
 - Conventional group analyses may lack sensitivity
 - Individual tests could be more effective but require a robust single subject statistics
 - Multivariate MRI, using structural perfusion, diffusion and spectral imaging together should improve statistical power
- Scale variability of damage
 - Large versus small scale dilemma in detecting alterations
 - Image analysis on a variable scale may be necessary

FA decrease ~ CAPS increase in PTSD+ (p<0.01)

Impact

- MRI of hippocampal subfields might
 - yield a marker of PTSD
 - differentiate between PTSD from TBI
 - be useful in assessing efficacy of pharmacologic interventions, specifically those that target proliferation of neurogenesis
 - advance our understanding of neural mechanisms in PTSD
- DTI of white matter alterations might
 - yield an index for TBI
 - differentiate between TBI and PTSD

Acknowledgments

- PTSD Clinic
 - Dr. Charles Marmar
 - Dr. Tom Neylan
 - Dr. Zhen Wang
 - MaryAnn Lenoci
- TBI
 - Dr. Gary Abrams
 - Dr. Grant Gauger

• MRI

- Dr. Susanne Mueller
- Dr. Yu Zhang
- Dr. K. Young
- Dr. Michael W. Weiner
- FUNDING
- DOD-Center of Excellence
- VA Mental Illness Research and Education Clinical Center (MIRECC).
- NIH National Research Resource Grant