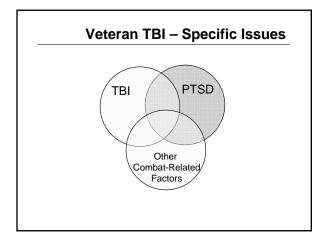
MRI In TBI And PTSD

Norbert Schuff, PhD Professor of Radiology

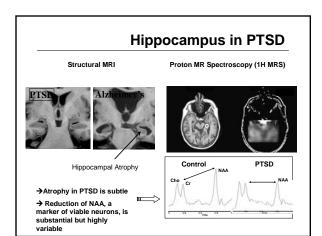

Center for Imaging Of Neurodegenerative Disases VA Medical Center University of California San Francisco

TBI - Problem Statement

- Most knowledge from hospitalized civilians
- TBI in returning veterans can be different
- In many cases less severe
 Much less documentation
- Diagnosis relies on symptomatology
- Symptoms overlap with PTSD
- > TBI and PTSD may co-exist
- Huge need for biomarkers of TBI and PTSD
- Our MRI studies are in progress!

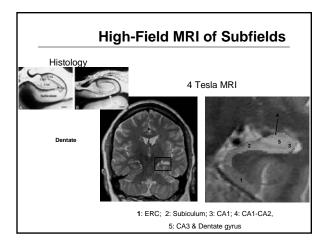
Overall Goal For MRI

- Objective detection of TBI and PTSD
- Improve differential diagnosis
- Predict progression
- Assess efficacy of therapeutic interventions
- Monitor treatment
- Elucidate mechanisms


MRI In PTSD: The Hippocampus

Plays an important role in

- Memory (declarative, spatial, and contextual)
- Perception of chronic pain
- Plasticity modulated by stress hormones (animal studies)
- Suppressed neurogenesis in the dentate gyrus
- Remodeling of dendrites in the CA3 region
- Elevated excitability of hippocampal neurons


Problems

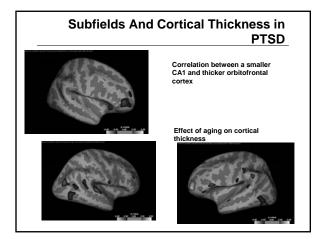
- Findings of hippocampal atrophy in PTSD have been inconsistent
- Alterations are subtle
- Normal aging and many brain disorders are also associated with alterations in the hippocampus

MRI Of Hippocampal Subfields

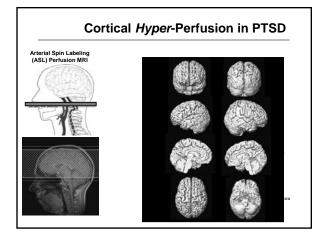
- Refine hippocampal measurements by imaging its subfields
- Determine if PTSD impacts specific hippocampal subfields
- <u>HYPOTHESES</u>
- The dentate gyrus is selectively reduced in PTSD
- The pattern of reduced subfields in PTSD is different from that in aging and other brain disorders, e.g. Alzheimer's disease

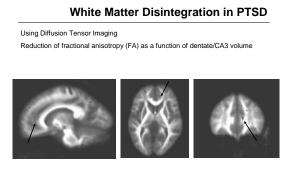
Subfield Volumes In PTSD

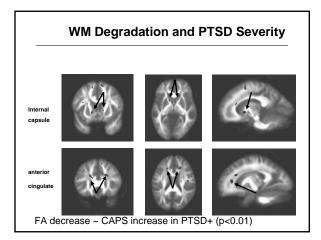
17 PTSD positive 19 PTSD negative

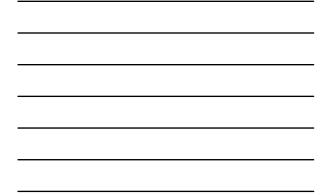

Differential Effects of Age And PTSD

PTSD — Control ------


Total Hippocampal Volumes


e Mueller et al. Neuroimage. 2008;42(1):42-8			
Table 1. Subfield and Total Hippocampal Volumes in mm3			
	Control N = 47	MCI N = 14	AD N = 14
ERC	202.4 ± 54.0	168.4 ± 48.0	145.0 ± 53.4*
Subiculum	200.2 ± 36.1	184.7 ± 38.1	154.2 ± 44.9*
CA1	331.4 ± 47.0	285.1 ± 42.5*	264.4 ± 63.1*
CA1-2 transition	20.5 ± 5.5	15.1 ± 3.4 *	14.1 ± 3.8*
CA3&DG	224.4 ± 37.7	227.2 ± 24.3	230.3 ± 54.7
Total Hippocampus	5520.6 ± 770.4	5154.9 ± 817.7	4450.8±1285.
* p<0.05 compared	to controls		
ERC, entorhinal co	rtex; CA1-2 transitio I CA4 together with	n, CA1-CA2 transition	zone (definition se





Conclusions

- A volume reduction of dentate/CA3 in PTSD is consistent with suppressed neurogenesis under chronic stress
- Dentate/CA3 reductions are not seen in normal aging, MCI and AD and therefore might be specific for PTSD
- Correlations between dentate/CA3, thickness of cortical regions, and white matter degradation suggests that PTSD impacts brain networks

Impact

- MRI of dentate/CA3 could be a PTSD marker to help
- improving PTSD diagnosis
- differentiating between PTSD and disorders with similar syndromes
- assessing efficacy of treatments, specifically those that target proliferation of neurogenesis
- advancing the understanding of PTSD mechanisms

Challenges For MRI in TBI

Regional heterogeneity

- Group analysis may lack sensitivity
- Individual tests could be more effective
- Establish robust single subject statistics
- Multivariate MRI, using structural perfusion, diffusion and spectral imaging together could improve power

• Scale Variability

- Large scale versus small scale dilemma in detecting alterations
 Image analysis on a variable scale maybe a solution, i.e using
- entropy and complexity measures

FA decrease ~ CAPS increase in PTSD+ (p<0.01)

Acknowledgments

PTSD Clinic

- Dr. Charles Marmar
- Dr. Tom Neylan
- Dr. Zhen Wang
- MaryAnn Lenoci

• TBI

- Dr. Gary Abrams
- Dr. Grant Gauger

• MRI

- Dr. Susanne MuellerDr. Wang Zhan
- Dr. Yu Zhang
- Dr. K. Young

Dr. Michael W. Weiner

FUNDING

.

- DOD-Center of Excellence
 VA Mental Illness Research and Education Clinical Center (MIRECC).
 - NIH National Research Resource Grant